

AUFTAKTVERANSTALTUNG KOMMUNALE WÄRMEPLANUNG IN STOCKELSDORF

Aktuell erstellt die Gemeinde Stockelsdorf die Kommunale Wärmeplanung. Doch was ist das eigentlich? Das Expert:innenteam lädt Sie herzlich zur offiziellen Auftaktveranstaltung ein. Freuen Sie sich auf Informationen über die Konzepterstellung und erfahren Sie mehr über den Ablauf der Kommunalen Wärmeplanung. Vor Ort haben Sie die Möglichkeit, Ihre Fragen zu stellen und sich einzubringen. Kommen Sie vorbei und diskutieren Sie mit.

Weitere Informationen finden Sie unter: https://klimaschutz.stockelsdorf.de

Mehr Füreinander. Mehr Klimaschutz. Das ist unser Stockelsdorf!

WÄRMEPLANUNG FÜR DIE GEMEINDE STOCKELSDORF

Auftaktveranstaltung | Dr.-Ing. Helmut Adwiraah | Stockelsdorf | 30.09.2025

Gefördert durch:

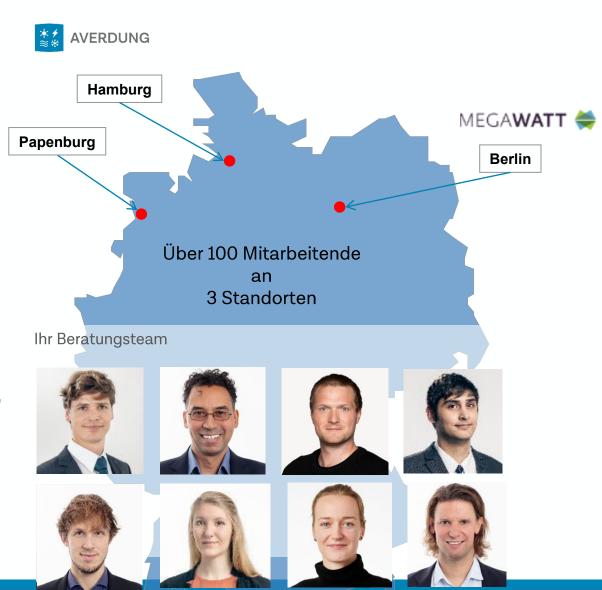
Averdung Ingenieure & Berater GmbH

Planckstraße 13, 22765 Hamburg

T: 040 77 18 501 0

www.averdung.de

E-Mail: info@averdung.de


Schwerpunkte

Gebäudetechnik, Erneuerbare Energien, Energieeffizienz und Energieversorgung, Klimaschutz und Emissionshandel

Projekt- und Konzeptentwicklung, Fachberatung, Planung und Bauleitung über alle Leistungsphasen

Energie- und Klimaschutzkonzepte Energieeffizienzberatung, Energieaudits, Energiemanagementsysteme

seit über 40 Jahren Erfahrung bei der Gesamtplanung und Umsetzung

ZEBAU – Zentrum für Energie, Bauen, Architektur und Umwelt

Gründung im Jahr 2000, 29 Mitarbeiter*innen

Gesellschafter

Behörde für Umwelt, Klima, Energie und Agrarwirtschaft Hamburg (BUKEA), Privatgesellschafter

Schwerpunkte:

Quartiere und Kommunen

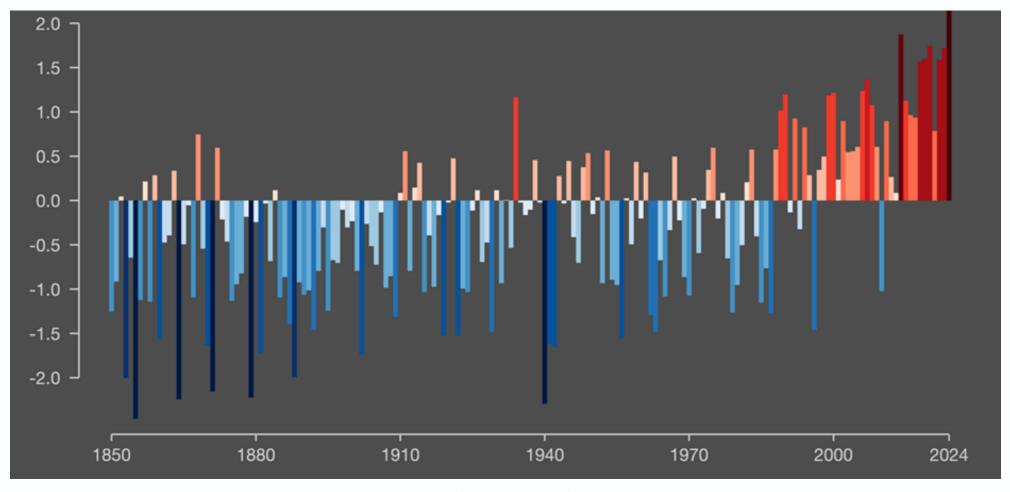
Kommunale Klimaschutzkonzepte, Energetische Quartierskonzepte und Sanierungsmanagements, Kommunale Wärmeplanung, Mobilitätskonzepte, Klimaanpassungskonzepte, **Kommunale Beratung**, Wettbewerbsbegleitung; EU-Interreg- und Horizon 2020-Projekte

Gebäude

Energieeffizienzberatung, Berechnungen und Nachweise, Energetische Potenzialermittlung, Konzepte der Wärme- und Stromversorgung, Bauphysikalische Optimierung, Qualitätsprüfung und Zertifizierung, Gebäudetechnikplanung (TGA), Architekturleistungen

Kommunikation

Fortbildungen, Expertenworkshops, Veranstaltungsmanagement, Öffentlichkeitsarbeit, Kampagnen, Kommunikation, Partizipationsprozesse, digitale Informations- und Beteiligungsveranstaltungen; EffizienzhausPlus-Netzwerk, IBA Hamburg, Informations- und Kompetenzzentrum für zukunftsgerechtes Bauen in Berlin



WARUM EIGENTLICH KLIMASCHUTZ?

Temperaturwandel in Schleswig-Holstein seit 1850 im Verhältnis zum Durchschnitt von 1961-2010 [°C]

Quelle: © CC BY 4.0; Ed Hawkins, National Centre for Atmospheric Science, UoR. https://showyourstripes.info/

SO ZEIGT SICH DER KLIMAWANDEL JETZT SCHON IN DEUTSCHLAND

TEMPERATUR

SEIT 1881

PFLANZENWACHSTUM

SEIT 1961

TAGE ÜBER 30 GRAD

SEIT 1951

NIEDERSCHLAG IM WINTER

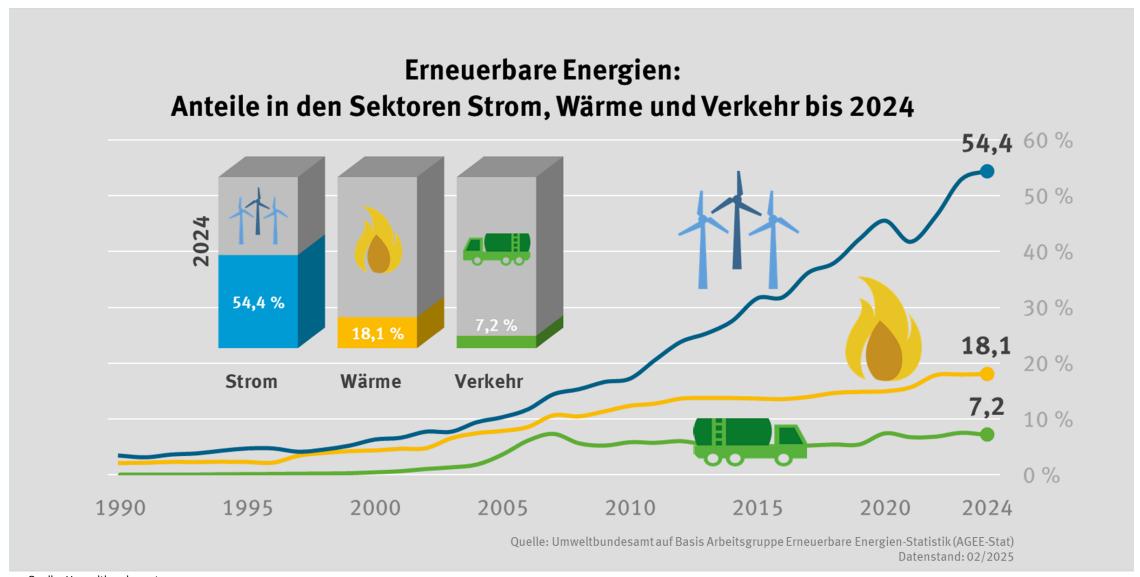
SEIT 1881

MEERESSPIEGEL

SEIT 1843 (PEGEL CUXHAVEN)

TAGE UNTER NULL GRAD

SEIT 1951

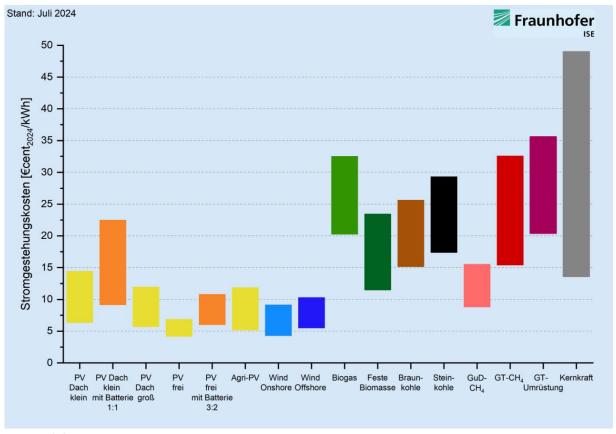


Quelle: Eigene Darstellung nach Deutscher Wetterdienst (2021)

Anteil Erneuerbarer Energien an der Energieversorgung

Quelle: Umweltbundesamt

Kommunale Wärmeplanung - Anlass & Notwendigkeit



Folgen des Klimawandels abwenden

- Energieverbrauch reduzieren
- Anteil Erneuerbare Energien erhöhen
- Treibhausgasemissionen senken

- Verringerung der Abhängigkeit von Importen aus dem Ausland
- Regionale und nationale Wertschöpfung
- Langfristig stabile und sinkende Energiekosten

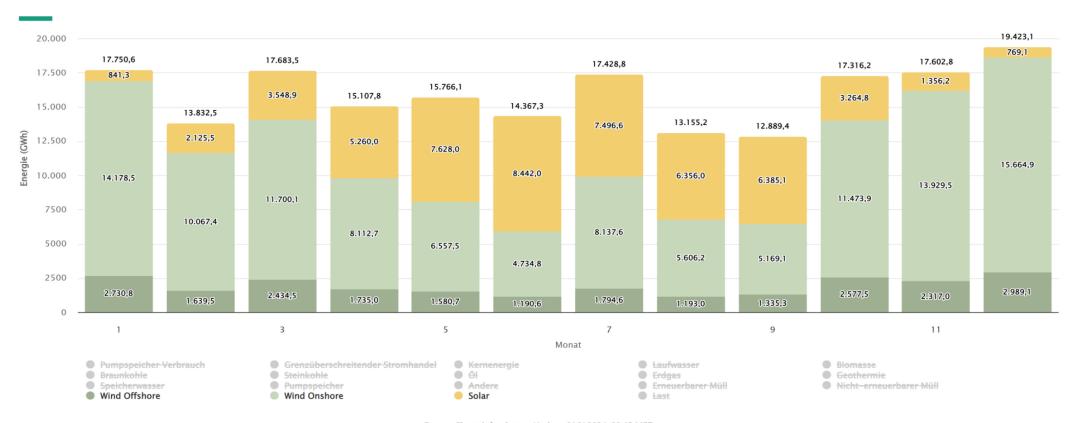
Ziel: Treibhausgasneutralität bis 2040

© Fraunhofer ISE

Abbildung 1: Stromgestehungskosten für Erneuerbare Energien und konventionelle Kraftwerke an Standorten in Deutschland im Jahr 2024. Spezifische Stromgestehungskosten sind mit einem minimalen und einem maximalen Wert je Technologie berücksichtigt.

Stromgestehungskosten erneuerbare Energien

Dr. Christoph Kost, Fraunhofer ISE | Juni 2024


https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/studie-stromgestehungskosten-erneuerbare-energien.html

Monatliche Wind- und Solarstromerzeugung

Jahr 2023

Energy-Charts.info - letztes Update: 01.01.2024, 20:45 MEZ

Quelle: https://www.energy-charts.info/charts/energy/chart.htm?l=de&c=DE&month=-1&stacking=stacked_grouped

*Daten zur öffentlichen Stromerzeugung

43

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Wie hoch sind die CO2-Kosten für eine Gasheizung?

für eine Ölheizung?

Jahr	CO2-Preis	CO2-Preis für Gas (brutto)	CO2-Kosten bei 6.000 kWh Verbrauch	CO2-Kosten bei 20.000 kWh Verbrauch	CO2-Kosten bei 600 Liter Verbrauch	CO2-Kosten bei 2.000 Liter Verbrauch
2023	30 Euro/Tonne	0,58 Cent/kWh ¹	35 Euro	116 Euro	57 Euro	191 Euro
2024	45 Euro/Tonne	0,97 Cent/kWh	58 Euro	194 Euro	86 Euro	287 Euro
2025	55 Euro/Tonne	1,19 Cent/kWh	71 Euro	237 Euro	105 Euro	350 Euro
2026	max. 65 Euro/Tonne ²	1,40 Cent/kWh	84 Euro	281 Euro	124 Euro	414 Euro
2030	z.B. 120 Euro/Tonne ³	2,59 Cent/kWh	155 Euro	518 Euro	229 Euro	764 Euro

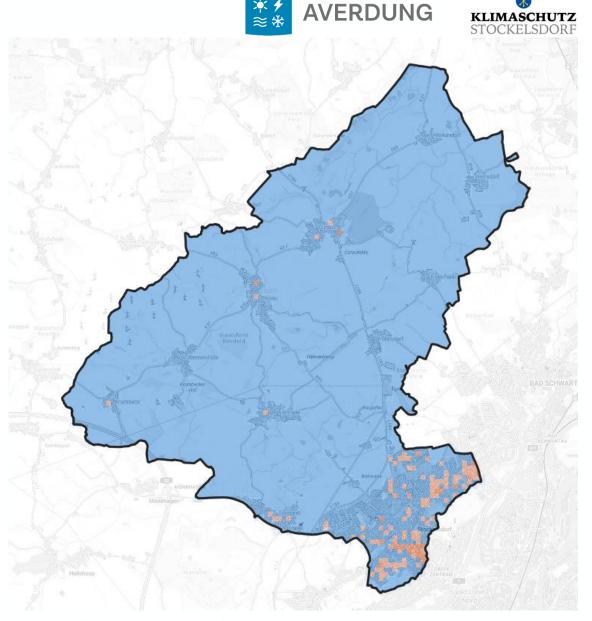
Alle Angaben wurden gerundet und auf den Brennwert bezogen. ¹ Reduzierte Mehrwertsteuer von 7 % berücksichtigt. ² Preiskorridor von 55 bis 65 Euro. ³ Geschätzter Preis nach dem <u>Kopernikus-Projekt Ariadne</u>. Quelle: Finanztip-Berechnung EBeV 2030 und § 10 Abs. 2 BEHG (Stand: August 2025)

https://www.finanztip.de/co2-steuer/

^{.2} Geschätzter Preis nach dem Kopernikus-10 Abs. 2 BEHG (Stand: August 2025)

Anlass der Erstellung der Wärmeplanung

Energiewende- und Klimaschutzgesetz Schleswig-Holstein (EWKG) und Wärmeplanungsgesetz (WPG)

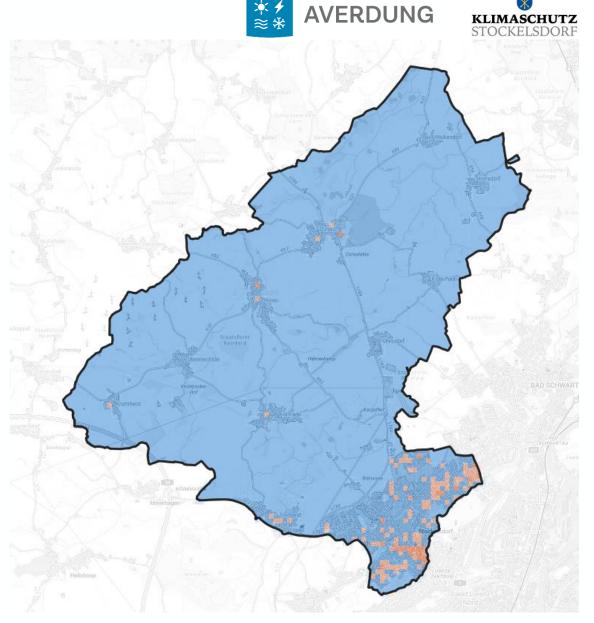

Nach §10 EWKG / § 4 WPG gilt: Pflicht zur Aufstellung eines Wärmeplans

- Wärmeplan ist spätesten bis 30. Juni 2028 zu erstellen
- Übergeordnete Inhalte des Wärmeplans und die Verpflichtung zur Datenbereitstellung sind vorgegeben
- Aus der Aufstellung der Kommunalen Wärmplanung resultieren keine rechtlichen Verbindlichkeiten (§ 23 WPG)
 - Keine Pflichten
 - Keine Ansprüche

Kommunale Wärmeplanung

Die **kommunale Wärmeplanung** gibt eine Übersicht,

- wie die klimaneutrale Wärmeversorgung in einzelnen Gebieten in der Gemeinde aussehen kann,
- mit welchen Quellen die Wärmeversorgung gespeist werden kann,
- welche Schritte notwendig sind, um die Ziele zu erreichen und
- welche Akteure notwendig und einzubeziehen sind.

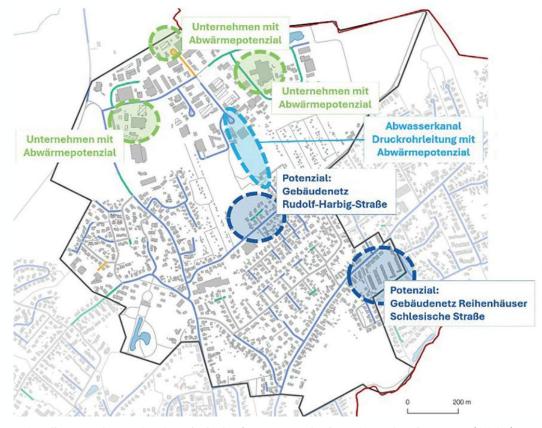


Wärmedichte nach DA Nord

Kommunale Wärmeplanung

Im Ergebnis werden

- Eignungsgebiete für Wärmenetze ermittelt,
- Gebiete ausgewiesen, die besser für eine dezentrale Versorgung geeignet sind
- und ein entsprechendes Maßnahmenprogramm inkl. Zeitrahmen und Priorisierung entwickelt.



Wärmedichte nach DA Nord

Ergebnisse aus dem energetischen Quartierskonzept (EQK) AVERDUNG "Nordquartier"

- EQK = detailliertes Konzept
 - Wärmeversorgung
 - Sanierung
 - Stromversorgung
 - Mobilität
 - Klimafolgenanpassung
- Wärmenetzpotenziale gering
- In Potenzialgebieten dezentrale Versorgung am günstigsten
- Abwärmepotenziale aufgrund technischer
 Rahmenbedingungen oder mangels Interesses nicht weiter betrachtet

Quelle: Nordquartier Stockelsdorf - Energetisches Quartierskonzept (2025)

☐ Gemeindegrenze

Quartiersgrenze KfW-432

stehende Gewässer

fließende Gewässer

— Straßen

Gebäude

beheizt

unbeheizt

Wärmeliniendichte in MWh/(Tm*a) bei einer Anschlußquote von 60%

 0 - 1 kein Wärmenetzpotenzial vorhanden

1 - 2

wirtschaftlich bei günstiger Wärmequelle

2 - 3

wirtschaftlich bei Systemtemperatur 55°C

voraussichtlich wirtschaftlich

Geodaten: GeoBasis-DE/ LVermGeo SH CC BY 4.0, 2023 (Quelle verändert); Wärmeliniendichte bei einer Anschlussquote von 60%

INHALTE KOMMUNALE WÄRMEPLANUNG

Bestandsanalyse

 Wie wird die Gemeinde mit Wärme versorgt?

Potenzialanalyse

 Erneuerbare Energiequellen und Abwärme

Szenarien Wärmeversorgung

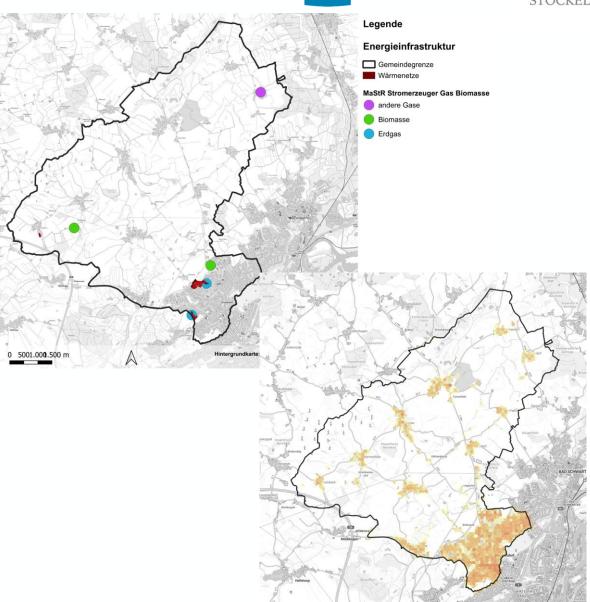
- Räumliches Konzept
- Zielszenario

Umsetzungsstrategie & Maßnahmen

- Maßnahmenkatalog
- Controlling-Konzept

Akteurs- & Öffentlichkeitsbeteiligung

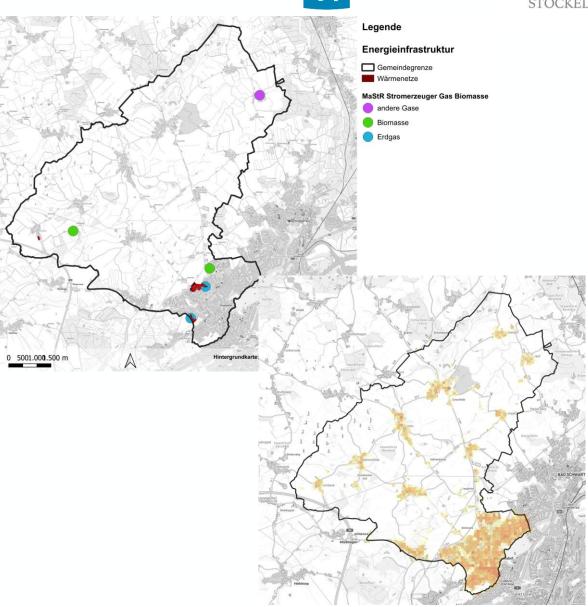
Umsetzung, Monitoring & Fortschreibung


Bestandsanalyse und Prognose

Ermittlung der Wärmebedarfe

- Reale Energieverbrauchswerte (geclustert)
- Schornsteinfegerdaten (geclustert)
- Berechnung anhand von
 - Gebäudedaten (Alter, Nutzung, Geschossigkeit etc.)
 - Gebäudetypologie

Bestandsanalyse und Prognose



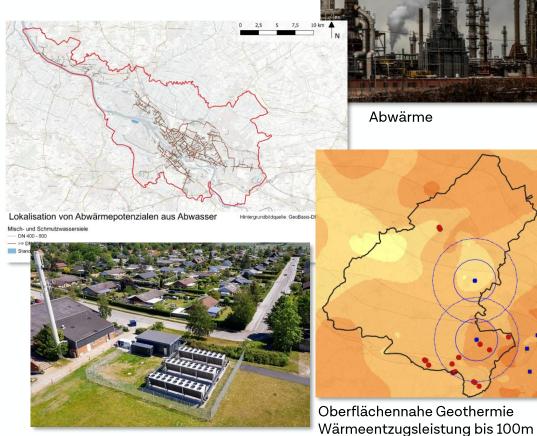
Prognose der zukünftigen Wärmebedarfe

- Einschätzung des Sanierungsstands aus
 - Abgleich zwischen berechneten und realen Werten
 - Virtuellen Begehungen
- Berechnung des zukünftigen Wärmebedarfs anhand von Sanierungsquote und -tiefe

Wärmeversorgungsinfrastruktur

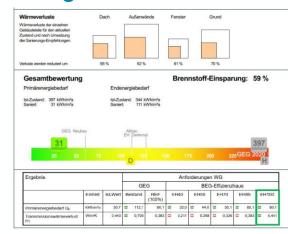
- Wärmenetze
- KWK-Anlagen

POTENZIALERMITTLUNG


Potenzialanalyse

Erneuerbare Energien

Abwassersiele in Bremen


1 MW Luftwärmepumpe Slagslunde Dänemark © planenergi.dk

Biomasse

www.freepik.com

Energieeffizienz

Einsparungspotenzial Bestandsgebäude

Agendade

Bad Schwartas

Falinate

Career

Car

Tiefengeothermie

bei Bedarf

Windpotenziale

Solarpotenziale

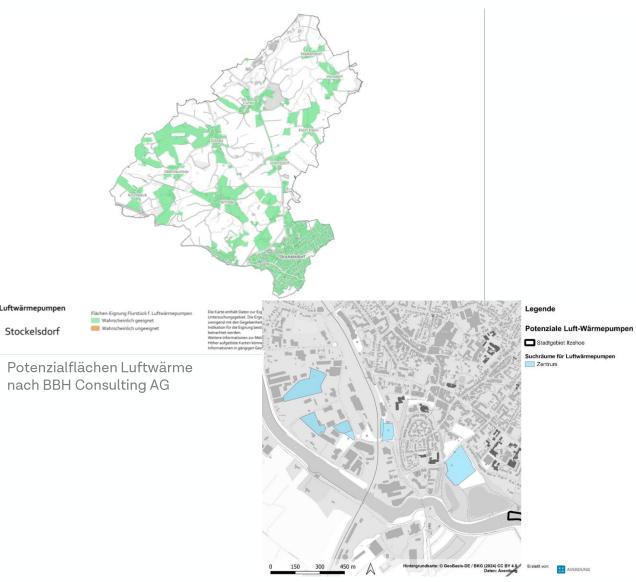
Potenzialanalyse - Luft-Wärmepumpen

- Luft-Wärmepumpen sind sowohl zentral (Wärmenetz) als auch dezentral (z.B. Einfamilienhaus) einsetzbar
- Potenzial ist grundsätzlich in großen Mengen vorhanden
- Schallschutz ist insbesondere bei größeren Anlagen zu beachten
- Luftwärmepumpen sind auch im Bestand einsetzbar
 - Ggf. Heizkörpertausch
 - Effizienz steigt mit zusätzlicher Modernisierung
 - Absenken der Vorlauftemperatur als Selbstexperiment
 - Gebäude mit Verbräuchen < 150 kWh/m² höchstwahrscheinlich

1 MW Luftwärmepumpe (Quelle: PlanEnergi)

Potenzialanalyse | Luft-Wärmepumpen

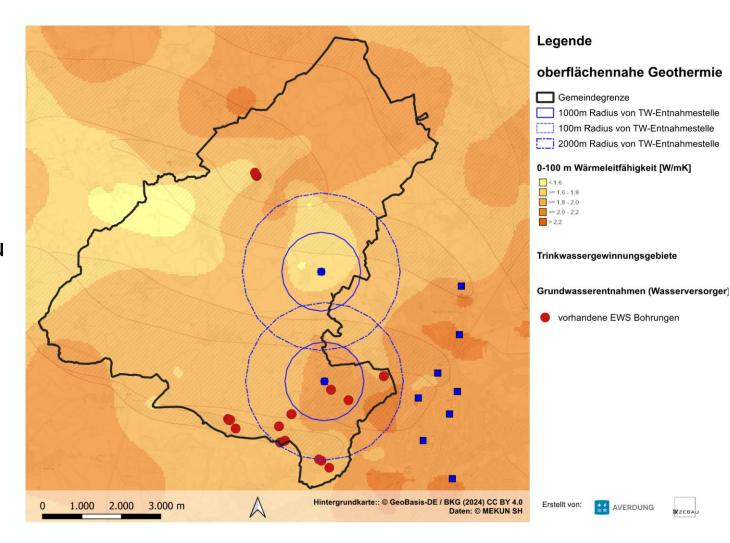
Beispiele Dänemark/Heidelberg


- Galten, 10,5 MW, solid-group.dk
- Slagslunde, 1,2 MW, planenergi.dk
- Saltum, 1,2 MW, aalborgcsp.com
- Ørum, 2,5 MW, aalborgcsp.com
- Heidelberg, 4 MW, Stadtwerke Heidelberg

Potenziale - Luftwärmepumpen

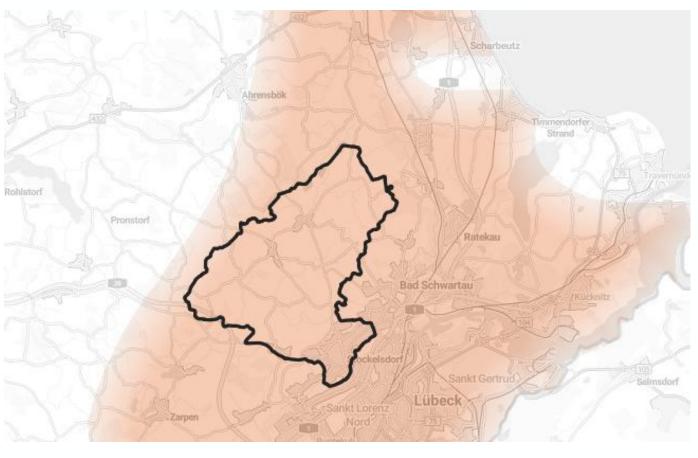
- Grundsätzlich viele Flächen in Siedlungsnähe geeignet
- Detaillierte Betrachtung Schall notwendig
- Detaillierte Potenziale für die zentrale Wärmeversorgung nach Ermittlung von Wärmenetzeignungsgebieten
- Keine detaillierte Betrachtung von dezentralen Lösungen im Rahmen der Wärmeplanung

Beispiel Potenzialflächen Luftwärme aus KWP Itzehoe


Potenzialanalyse - oberflächennahe Geothermie

Wärmeleitfähigkeit überwiegend gut

- gute bis sehr gute Entzugsleistungen wahrscheinlich
- Trinkwassergewinnungsgebiete
- 2 Trinkwasserbrunnen vorhanden
- Bereits einige Erdwärmesonden bis zu 135 m
- Oberflächennahe Geothermie grundsätzlich geeignet
- → Ggf. Einschränkungen durch Trinkwasserentnahmegebiete



Potenzialanalyse - Tiefe Geothermie

- Sehr gute Möglichkeit große Energiemengen für die Wärmeversorgung zu erschließen...
- ...wenn es funktioniert:
- Hohes Projektrisiko in der Größenordnung von € 10 – 20 Mio.
- Potenziale laut geodienste SH vorhanden
- Große Wärmeabnahme notwendig
- Ergibt nur gemeinsam mit Lübeck oder Bad Schwartau Sinn
- In KWP Lübeck geprüft Ergebnis: zu hohes Projektrisiko

Rhät-Sandsteine

Quelle: Landesamt für Umwelt des Landes Schleswig-Holstein (LfU) Hintergrundkarte: © GeoBasis-DE / BKG (2023) CC BY 4.0

Erinnerung - Potenzialanalyse

Sehr relevant für die zukünftige zentrale Wärmeversorgung

Teilweise relevant f
ür die zuk
ünftige zentrale W
ärmeversorgung

Over der bedeutung für die zukünftige zentrale Wärmeversorgung

Technologie	Einordnung	Hinweise
Aerothermie / Luft-Wärme	+ + +	Flexibel, kein Eingriff in Boden/Natur
Oberflächennahe Geothermie	+ +	Potenzial vorhanden. Ggf. Einschränkungen durch Trinkwassergewinnungsgebiete
Solarthermie		Unterstützende Rolle möglich, Saisonalität, Flächenkonkurrenz
Abwärme		Kein nutzbares Potenzial laut EQK. In Prüfung
Tiefengeothermie		Hohes Projektrisiko, geringe Mächtigkeit des Nutzhorizonts, Gemeinde innerhalb der Potenzialflächen, Zusammenarbeit mit Nachbarn notwendig
Abwasserwärme		Keine Leitungen mit nutzbarem Durchmesser, kein Klärwerk im Gemeindegebiet
Gewässerwärme		Keine relevanten Gewässer
Biomasse		Geringes Potenzial und herausfordernde Rahmenbedingungen bei der Einsammlung
Biogas		Geringes Potenzial

NÄCHSTE SCHRITTE

Wärmeversorgungsgebiete

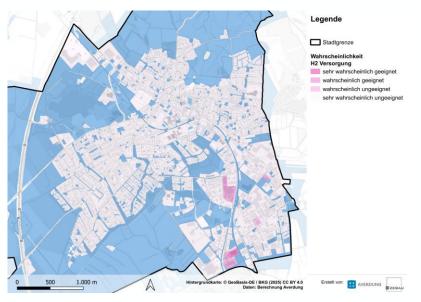
Räumliches Konzept / Zielszenario

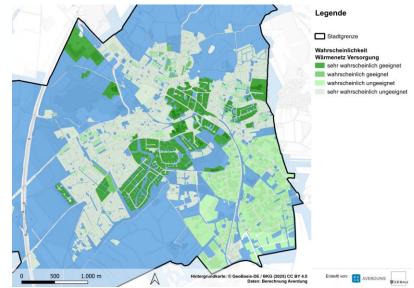
Umsetzungsstrategie mit Maßnahmenkatalog

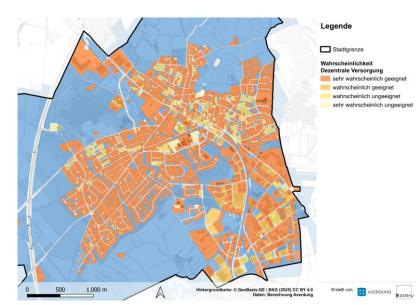
Öffentlichkeitsbeteiligung

Wärmenetzeignungsgebiete am Beispiel EQK

Geodaten: GeoBasis-DE/ LVermGeo SH CC BY 4.0, 2023 (Quelle verändert); Wärmeliniendichte bei einer Anschlussquote von 60%

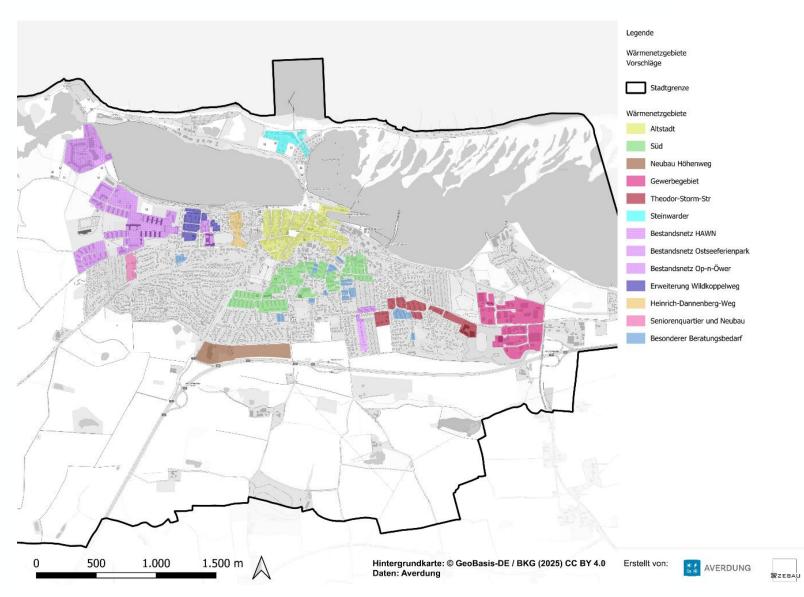

Quelle: Energetisches Quartierskonzept "Nordquartier"


Wärmeversorgungsgebiete - Beispiel Kaltenkirchen



- Einteilung der Wärmeversorgungsgebiete in
 - Wasserstoffgebiet
 - Wärmenetzgebiet
 - Dezentrale Versorgung
- Wasserstoffnutzung nicht wirtschaftlich und technisch sinnvoll für Raumwärmeversorgung
 - Ggf. Nutzung in Gewerbe- und Industriegebieten möglich

Räumliches Konzept / Zielszenario - Beispiel Heiligenhafer ** AVERDUNG



Wärmenetzgebiete

- Vorhandenes Wärmenetz
- Erweiterungsgebiete
- Eignungsgebiete
- Prüfgebiete
- Besonderer Beratungsbedarf

Wärmeversorgungsoptionen

- Luft-Wärmepumpe
- Oberflächennahe Geothermie
- (Abwärme)

Maßnahmenkatalog – Wärmenetzeignungsgebiet Beispiel WN1

WN1	Prüfung der Machbarkeit eines Wärmenetzes im Wärmenetzeignungsgebiet "Zentrum"				
Gebiet	Das Gebiet umfasst den Stadtkern Kaltenkirchens im Norden der Bahntrasse inkl. der Gebäude nördlich der Schule am Marschweg. Im Osten reicht das Gebiet bis zum Bahnhof, im Norden wird der Suchraum durch den Bereich Glockengießerwall abgegrenzt.				
Wärme- und CO ₂ -	Wärmebedarf Bestand CO ₂ -Emissionen Bes		tand Wärmebedarf 2040		rf 2040
Emissionen	13,5 GWh/a 3.500 t/a		11,9 GWh/a		
Angestrebte Versorgungsart	Zentral durch Luftwärmepumpe, Erweiterung Bestandsnetz				
Ziele			Prioritä	t Hoch	

- Aufbau einer leitungsgebundenen Wärmeversorgung im Eignungsgebiet unter Einbeziehung der Suchräume für Luftwärmepumpen
- Nutzung von Synergien durch Einbeziehung in die Innenstadtsanierung

Kurzbeschreibung

Das Zentrum Kaltenkirchens ist durch eine heterogene Gebäudestruktur geprägt. Aus der dichten Bebauung resultiert eine hohe Wärmeliniendichte. Diese macht das Gebiet für ein Wärmenetz interessant. Durch die heterogenen Eigentumsverhältnisse können die wirtschaftliche Erschließung und die Erzielung von hohen Anschlussquoten eine Herausforderung darstellen. Die Identifikation und die Bindung von Ankerkundinnen und - kunden sollten frühzeitig erfolgen, um eine gesicherte Wärmeabnahme zu erreichen. Grundsätzlich könnte das Bestandsnetz von Hansewerk Natur über die Gemeinschaftsschule am Marschweg in Richtung Zentrum erweitert werden. Alternativ oder zusätzlich könnte eine Versorgung mittels einer zentralen Luft-Wärmepumpe von den nördlich gelegenen Potenzialflächen erfolgen.

Beitrag zur Erreichung des Zielszenarios				
Bau von Wärmenetzen, Substitution von fossilen Heizungen				
Zuständigkeit	Einzubindende Akteurinnen und Akteure			
Zukünftiger Contractor	Ankerkundinnen und -kunden			
Stadt Kaltenkirchen bei Suche eines Contractors	Fachplanung			
Handlungsschritte				
 (Festlegung des Contractors) Beantragung von Fördermitteln Untersuchung der Machbarkeit und Vorplanung für festgelegte Prüfgebiete (BEW-Machbarkeitsstudie) Beschluss über Umsetzung der Maßnahme 	 Beantragung von Fördermitteln für die Umsetzung Vergabe der Planungsleistung Planung und Vergabe der Bauleistungen Beginn der ersten Baumaßnahmen Wärmelieferung 			
Kostenübersicht und -träger	Finanzierungsmechanismen			
Machbarkeitsstudie: ca. 50.000€ (Contractor)	BEW-Förderung			
Investitionskosten Energieanlagen (Wärmenetz, Energiezentrale etc.): ca. 10 – 15 Mio. €	ggf. weitere Förderprogramme			
Flankierende Maßnahmen	Erfolgsindikatoren / Meilensteine			
WN2, WN4, WN8	 Auswahl Contractor Abschluss Machbarkeitsstudie Erfolgreiche Beantragung der Fördermittel für die Umsetzung Abschluss der Planung Vollständige Substitution der konventionellen Energieversorgung im Netzgebiet durch erneuerbare Energien Anteil erneuerbarer Energie an der Wärmebereitstellung Anteil / Wärmemenge der ersetzten fossilen Versorgung Eingesparte THG-Emissionen 			

DEZENTRALE WÄRMEVERSORGUNG

Novelliertes Gebäudeenergiegesetz (GEG 2024)

Einige wesentliche Inhalte:

- Für bestehende Heizungen gibt es keine neuen Regelungen, diese können weiter betrieben und bei Bedarf auch repariert werden (abgesehen von den sonstigen Austauschpflichten)
- In Neubaugebieten gilt ab 01.01.2024 für jede neue Heizung ein erneuerbarer Anteil von mind. 65 %
- Bei Bestandsgebäuden gilt diese Anforderung in Stockelsdorf spätestens ab 30.06.2028,
- Übergangsfrist von fünf Jahren für eine neue Heizung ab 01.01.2024, die die 65 % EE-Vorgabe nicht erfüllt

Hilfreiche Übersicht der Verbraucherzentrale:
https://www.verbraucherzentrale.de/wissen/energie/energetischesanierung/geg-was-aendert-sich-mit-dem-gebaeudeenergiegesetz-13886

Gebäudeenergiegesetz (GEG 2024)

Anforderungen an Neuanlagen ab 2024

Verpflichtende Anteile an erneuerbare Energien

2029: 15 %

2035: 30 %

2040: 60 %

2045: 100 %

Hilfreiche Übersicht der Verbraucherzentrale:

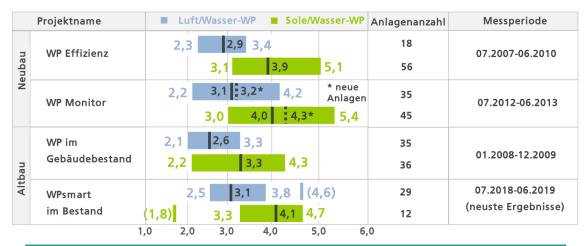
https://www.verbraucherzentrale.de/wissen/energie/energetischesanierung/geg-was-aendert-sich-mit-dem-gebaeudeenergiegesetz-13886

Zusätzliche Anforderungen in Schleswig-Holstein

Vorgaben aus § 16 EWKG SH

- Was?
 - Pflicht zu 15 % Erneuerbaren Energien
 - Ab 01.Juli 2022
- Für wen gilt das?
 - Gebäude, die vor 2009 errichtet wurden
 - Bei Heizungstausch oder neu eingebauter Heizung
- FAQ der Verbraucherzentrale
 - <u>www.verbraucherzentrale.sh/faq/energie/faq-erneuerbareenergienpflicht-fuer-heizungen-in-schleswigholstein-70069</u>

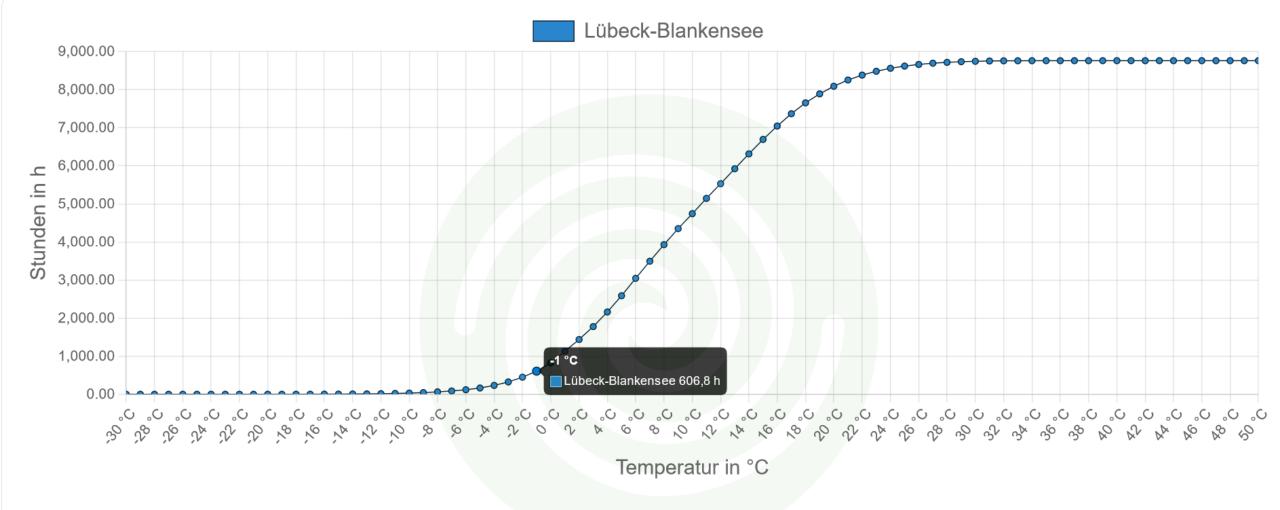
Eignung von Wärmepumpen im Bestand in EFH/RH



Ergebnisse des Forschungsprojekts "WP_{SMART} im Bestand" und der Forschungsarbeiten von Dr. Marek Miara (Frauenhofer ISE):

- Wenn Ihr Haus unter 150 kWh / m² liegt, dann können Sie eine Wärmepumpe ohne Probleme einsetzen.
- Wenn Sie bei kalten Temperaturen für eine Zeit die Vorlauftemperatur auf 55 °C stellen und alle Räume warm genug werden, können Sie beruhigt umstellen. 55 °C ist ein Richtwert, kein Ausschlusskriterium.
- Moderne Wärmepumpen z.B. mit Propan als Kältemittel schaffen Vorlauftemperaturen bis 75 °C. Es ist in Stockelsdorf nicht oft lange am Stück wirklich kalt. In vielen Fällen ist die Heizleistung in alten Häusern ohnehin überdimensioniert.

Wärmepumpen – Monitoring EFH Arbeitszahlen



https://www.ise.fraunhofer.de/content/dam/ise/de/downloads/pdf/Forschungsprojekte/BMWi-03ET1272A-WPsmart_im_Bestand-Schlussbericht.pdf

Außentemperatur Stockelsdorf (nächste Messstation)

Generiert am: 14.01.2025

Stunden für Lufttemperaturen in Postleitzahlengebiet 23617 basierend auf der nächstliegenden Messstation in Lübeck-Blankensee. Dieser Graph ist auf Basis von 157426 Messungen zwischen 02.01.2007 und 02.01.2025 generiert worden. Quelle: Deutscher Wetterdienst

Maßnahmen zur Verbesserung der Eignung

Maßnahmen zur optimierten Wärmepumpeneignung:

- Dämmung der Verteilleitungen
- hydraulischer Abgleich
- Einbau hocheffizienter Pumpen
- Senkung der Vorlauftemperatur auf 55°C / 45°C
- ggf. Heizkörpertausch
- Effizienz steigt mit zusätzlicher Modernisierung

Öffentlichkeit und Beteiligung



Informationsveranstaltungen

- Auftaktveranstaltung
- Abschlussveranstaltung
- Beteiligung Politik
 - Vorstellung der KWP im Ausschuss

- Weitere Beteiligungsformate
 - weitere Informationsformate im Workshopformat
 - Sie haben Vorschläge gemacht
 - FAQ- häufig gestellte Fragen

FRAGERUNDE

- Auch online unter: klimaschutz@stockelsdorf.de
- Mehr Informationen zur KWP:
- https://klimaschutz.stockelsdorf.de/
- https://klimaschutz.stockelsdorf.de/wohnen-und-heizen/faq-ihre-fragen-zur-kwp/

Wir sind gern für Sie da.

Patrick Akram Projektleitung

patrick.akram@averdung.de

Dr.-Ing. Helmut Adwiraah Stellvertretende Projektleitung

helmut.adwiraah@averdung.de

Jessica Zander
Teilprojektleitung ZEBAU

Jessica.zander@zebau.de

Sophia Cornelißen
Klimaschutzmanagerin
Stockelsdorf
Tel. +49 (0) 451 4901 315
Klimaschutz@stockelsdorf.de